Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.514
Filtrar
1.
Radiother Oncol ; 194: 110160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369025

RESUMO

PURPOSE: The early regression index (ERI) predicts treatment response in rectal cancer patients. Aim of current study was to prospectively assess tumor response to neoadjuvant chemo-radiotherapy (nCRT) of locally advanced esophageal cancer using ERI, based on MRI. MATERIAL AND METHODS: From January 2020 to May 2023, 30 patients with esophageal cancer were enrolled in a prospective study (ESCAPE). PET-MRI was performed: i) before nCRT (tpre); ii) at mid-radiotherapy, tmid; iii) after nCRT, 2-6 weeks before surgery (tpost); nCRT delivered 41.4 Gy/23fr with concurrent carboplatin and paclitaxel. For patients that skipped surgery, complete clinical response (cCR) was assessed if patients showed no local relapse after 18 months; patients with pathological complete response (pCR) or with cCR were considered as complete responders (pCR + cCR). GTV volumes were delineated by two observers (Vpre, Vmid, Vpost) on T2w MRI: ERI and other volume regression parameters at tmid and tpost were tested as predictors of pCR + cCR. RESULTS: Complete data of 25 patients were available at the time of the analysis: 3/25 with complete response at imaging refused surgery and 2/3 were cCR; in total, 10/25 patients showed pCR + cCR (pCR = 8/22). Both ERImid and ERIpost classified pCR + cCR patients, with ERImid showing better performance (AUC:0.78, p = 0.014): A two-variable logistic model combining ERImid and Vpre improved performances (AUC:0.93, p < 0.0001). Inter-observer variability in contouring GTV did not affect the results. CONCLUSIONS: Despite the limited numbers, interim analysis of ESCAPE study suggests ERI as a potential predictor of complete response after nCRT for esophageal cancer. Further validation on larger populations is warranted.


Assuntos
Neoplasias Esofágicas , Imageamento por Ressonância Magnética , Terapia Neoadjuvante , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Quimiorradioterapia , Paclitaxel/administração & dosagem , Carboplatina/administração & dosagem , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto
2.
Phys Rev Lett ; 131(19): 191001, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000434

RESUMO

Detailed measurements of the spectral structure of cosmic-ray electrons and positrons from 10.6 GeV to 7.5 TeV are presented from over 7 years of observations with the CALorimetric Electron Telescope (CALET) on the International Space Station. The instrument, consisting of a charge detector, an imaging calorimeter, and a total absorption calorimeter with a total depth of 30 radiation lengths at normal incidence and a fine shower imaging capability, is optimized to measure the all-electron spectrum well into the TeV region. Because of the excellent energy resolution (a few percent above 10 GeV) and the outstanding e/p separation (10^{5}), CALET provides optimal performance for a detailed search of structures in the energy spectrum. The analysis uses data up to the end of 2022, and the statistics of observed electron candidates has increased more than 3 times since the last publication in 2018. By adopting an updated boosted decision tree analysis, a sufficient proton rejection power up to 7.5 TeV is achieved, with a residual proton contamination less than 10%. The observed energy spectrum becomes gradually harder in the lower energy region from around 30 GeV, consistently with AMS-02, but from 300 to 600 GeV it is considerably softer than the spectra measured by DAMPE and Fermi-LAT. At high energies, the spectrum presents a sharp break around 1 TeV, with a spectral index change from -3.15 to -3.91, and a broken power law fitting the data in the energy range from 30 GeV to 4.8 TeV better than a single power law with 6.9 sigma significance, which is compatible with the DAMPE results. The break is consistent with the expected effects of radiation loss during the propagation from distant sources (except the highest energy bin). We have fitted the spectrum with a model consistent with the positron flux measured by AMS-02 below 1 TeV and interpreted the electron+positron spectrum with possible contributions from pulsars and nearby sources. Above 4.8 TeV, a possible contribution from known nearby supernova remnants, including Vela, is addressed by an event-by-event analysis providing a higher proton-rejection power than a purely statistical analysis.

4.
Phys Rev Lett ; 130(21): 211001, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295105

RESUMO

We present the observation of a charge-sign dependent solar modulation of galactic cosmic rays (GCRs) with the Calorimetric Electron Telescope onboard the International Space Station over 6 yr, corresponding to the positive polarity of the solar magnetic field. The observed variation of proton count rate is consistent with the neutron monitor count rate, validating our methods for determining the proton count rate. It is observed by the Calorimetric Electron Telescope that both GCR electron and proton count rates at the same average rigidity vary in anticorrelation with the tilt angle of the heliospheric current sheet, while the amplitude of the variation is significantly larger in the electron count rate than in the proton count rate. We show that this observed charge-sign dependence is reproduced by a numerical "drift model" of the GCR transport in the heliosphere. This is a clear signature of the drift effect on the long-term solar modulation observed with a single detector.


Assuntos
Radiação Cósmica , Voo Espacial , Telescópios , Prótons , Elétrons
5.
Phys Rev Lett ; 130(17): 171002, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172251

RESUMO

We present the results of a direct measurement of the cosmic-ray helium spectrum with the CALET instrument in operation on the International Space Station since 2015. The observation period covered by this analysis spans from October 13, 2015, to April 30, 2022 (2392 days). The very wide dynamic range of CALET allowed for the collection of helium data over a large energy interval, from ∼40 GeV to ∼250 TeV, for the first time with a single instrument in low Earth orbit. The measured spectrum shows evidence of a deviation of the flux from a single power law by more than 8σ with a progressive spectral hardening from a few hundred GeV to a few tens of TeV. This result is consistent with the data reported by space instruments including PAMELA, AMS-02, and DAMPE and balloon instruments including CREAM. At higher energy we report the onset of a softening of the helium spectrum around 30 TeV (total kinetic energy). Though affected by large uncertainties in the highest energy bins, the observation of a flux reduction turns out to be consistent with the most recent results of DAMPE. A double broken power law is found to fit simultaneously both spectral features: the hardening (at lower energy) and the softening (at higher energy). A measurement of the proton to helium flux ratio in the energy range from 60 GeV/n to about 60 TeV/n is also presented, using the CALET proton flux recently updated with higher statistics.

6.
Materials (Basel) ; 15(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36556663

RESUMO

Nowadays, the use of biomass to produce cathode materials for lithium-sulfur (Li-S) batteries is an excellent alternative due to its numerous advantages. Generally, biomass-derived materials are abundant, and their production processes are environmentally friendly, inexpensive, safe, and easily scalable. Herein, a novel biomass-derived material was used as the cathode material in Li-S batteries. The synthesis of the new carbonaceous materials by simple carbonization and washing of water kefir grains, i.e., a mixed culture of micro-organisms, is reported. The carbonaceous materials were characterized morphologically, texturally and chemically by using scanning electron microscopy, N2 adsorption-desorption, thermogravimetric analysis, X-ray diffraction, and both Raman and X-ray photoelectron spectroscopy. After sulfur infiltration using the melt diffusion method, a high sulfur content of ~70% was achieved. Results demonstrated that the cell fitted with a cathode prepared following a washing step with distilled water after carbonization of the water kefir grains only, i.e., not subjected to any chemical activation, achieved good electrochemical performance at 0.1 C. The cell reached capacity values of 1019 and 500 mAh g-1 sulfur for the first cycle and after 200 cycles, respectively, at a high mass loading of 2.5 mgS cm-2. Finally, a mass loading study was carried out.

7.
Phys Rev Lett ; 129(10): 101102, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112450

RESUMO

A precise measurement of the cosmic-ray proton spectrum with the Calorimetric Electron Telescope (CALET) is presented in the energy interval from 50 GeV to 60 TeV, and the observation of a softening of the spectrum above 10 TeV is reported. The analysis is based on the data collected during ∼6.2 years of smooth operations aboard the International Space Station and covers a broader energy range with respect to the previous proton flux measurement by CALET, with an increase of the available statistics by a factor of ∼2.2. Above a few hundred GeV we confirm our previous observation of a progressive spectral hardening with a higher significance (more than 20 sigma). In the multi-TeV region we observe a second spectral feature with a softening around 10 TeV and a spectral index change from -2.6 to -2.9 consistently, within the errors, with the shape of the spectrum reported by DAMPE. We apply a simultaneous fit of the proton differential spectrum which well reproduces the gradual change of the spectral index encompassing the lower energy power-law regime and the two spectral features observed at higher energies.

8.
Heliyon ; 8(7): e09803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35800251

RESUMO

Edible coatings to extend the shelf life and preserve the quality of fruit and vegetables are highly demanded nowadays. Recently, plant-based edible coatings have gained importance in the context of sustainability, which in combination with suitable top-down process can render "greener" nanoemulsions with optimized properties. Herein we developed a carnauba wax nanoemulsion (CWN) by using a high-pressure processing to be applied as an edible coating for fruit and vegetables. The as-developed nanoemulsion properties were compared to conventional carnauba wax emulsion (CWM), where CWN showed particle size diameter of 44 nm and narrow distribution, while CWM displayed larger particles and wider size distribution (from 200 to 1700 nm). For assessment of the postharvest quality, cv. 'Debora' tomatoes, employed here as a model, were coated with CWN or CWM, at concentrations of 9 and 18%, and then compared to uncoated fruit during storage at 23 °C for 15 days. Evaluation of fruit quality, including sugar, acids, pH, water vapor loss, firmness, gloss, color, ethylene and respiratory activity, were assessed at every 3 days, while sensory test were carried out at the end of storage. Uncoated tomatoes presented the highest water loss values, meanwhile, firmness, ethylene, and respiratory activity were not largely modified by the coatings during storage. Tomatoes coated with the CWN exhibited the highest instrumental gloss and were preferred by consumers in sensory evaluations, indicating the potential of the as-developed carnauba wax green nanoemulsion for postharvest applications.

9.
Phys Rev Lett ; 128(13): 131103, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426700

RESUMO

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3 GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8 to 240 GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240 GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

10.
Ann Surg Oncol ; 29(6): 3492-3502, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230580

RESUMO

BACKGROUND: Limited information is available on the relevant prognostic variables after surgery for patients with pancreatic ductal adenocarcinoma (PDAC) subjected to neoadjuvant chemotherapy (NACT). NACT is known to induce a spectrum of histological changes in PDAC. Different grading regression systems are currently available; unfortunately, they lack precision and accuracy. We aimed to identify a new quantitative prognostic index based on tumor morphology. PATIENTS AND METHODS: The study population was composed of 69 patients with resectable or borderline resectable PDAC treated with preoperative NACT (neoadjuvant group) and 36 patients submitted to upfront surgery (upfront-surgery group). A comprehensive histological assessment on hematoxylin and eosin (H&E) stained sections evaluated 20 morphological parameters. The association between patient survival and morphological variables was evaluated to generate a prognostic index. RESULTS: The distribution of morphological parameters evaluated was significantly different between upfront-surgery and neoadjuvant groups, demonstrating the effect of NACT on tumor morphology. On multivariate analysis for patients that received NACT, the predictors of shorter overall survival (OS) and disease-free survival (DFS) were perineural invasion and lymph node ratio. Conversely, high stroma to neoplasia ratio predicted longer OS and DFS. These variables were combined to generate a semiquantitative prognostic index based on both OS and DFS, which significantly distinguished patients with poor outcomes from those with a good outcome. Bootstrap analysis confirmed the reproducibility of the model. CONCLUSIONS: The pathologic prognostic index proposed is mostly quantitative in nature, easy to use, and may represent a reliable tumor regression grading system to predict patient outcomes after NACT followed by surgery for PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/cirurgia , Humanos , Terapia Neoadjuvante , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Neoplasias Pancreáticas
11.
Nat Commun ; 13(1): 727, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132058

RESUMO

The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models.

12.
Phys Rev Lett ; 129(25): 251103, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608255

RESUMO

We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from 8.4 GeV/n to 3.8 TeV/n based on the data collected by the Calorimetric Electron Telescope (CALET) during ∼6.4 yr of operation on the International Space Station. An update of the energy spectrum of carbon is also presented with an increase in statistics over our previous measurement. The observed boron flux shows a spectral hardening at the same transition energy E_{0}∼200 GeV/n of the C spectrum, though B and C fluxes have different energy dependences. The spectral index of the B spectrum is found to be γ=-3.047±0.024 in the interval 25

13.
ESMO Open ; 7(1): 100348, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942439

RESUMO

INTRODUCTION: The albumin-bilirubin (ALBI) grade is a novel indicator of the liver function. Some studies showed that the ALBI grade was a prognostic and predictive biomarker for the efficacy of chemotherapy in cancer patients. The association between the ALBI grade and outcomes in patients with non-small-cell lung cancer (NSCLC) treated with cancer immunotherapy, however, is poorly understood. METHODS: We retrospectively enrolled 452 patients with advanced or recurrent NSCLC who received anti-programmed cell death protein 1 (PD-1)-based therapy between 2016 and 2019 at three medical centers in Japan. The ALBI score was calculated from albumin and bilirubin measured at the time of treatment initiation and was stratified into three categories, ALBI grade 1-3, with reference to previous reports. We examined the clinical impact of the ALBI grade on the outcomes of NSCLC patients receiving anti-PD-1-based therapy using Kaplan-Meier survival curve analysis with log-rank test and Cox proportional hazards regression analysis. RESULTS: The classifications of the 452 patients were as follows: grade 1, n = 158 (35.0%); grade 2, n = 271 (60.0%); and grade 3, n = 23 (5.0%). Kaplan-Meier survival curve analysis showed that the ALBI grade was significantly associated with progression-free survival and overall survival. Moreover, Cox regression analysis revealed that the ALBI grade was an independent prognostic factor for progression-free survival and overall survival. CONCLUSION: The ALBI grade was an independent prognostic factor for survival in patients with advanced or recurrent NSCLC who receive anti-PD-1-based therapy. These findings should be validated in a prospective study with a larger sample size.


Assuntos
Albuminas , Bilirrubina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Albuminas/análise , Bilirrubina/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Prospectivos , Estudos Retrospectivos
14.
Phys Rev Lett ; 127(21): 217004, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860085

RESUMO

Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO_{2} layers in the triple-layer cuprate high-temperature superconductor Bi_{2}Sr_{2}Cu_{2}Cu_{3}O_{10+δ} is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anticrossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing. We find that the d-wave superconducting gap of both BQP bands smoothly develops with momentum without an abrupt jump in contrast to a previous ARPES study. Hybridization between the BQPs also gradually increases in going from the off nodal to the antinodal region, which is explained by the momentum dependence of the interlayer single-particle hopping. As possible mechanisms for the enhancement of the superconducting transition temperature, the hybridization between the BQPs as well as the combination of phonon modes of the triple CuO_{2} layers and spin fluctuations represented by a four-well model are discussed.

15.
Ann Oncol ; 32(11): 1434-1441, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391895

RESUMO

BACKGROUND: The severity of oxaliplatin (L-OHP)-induced peripheral sensory neuropathy (PSN) exhibits substantial interpatient variability, and some patients suffer from long-term, persisting PSN. To identify single-nucleotide polymorphisms (SNPs) predicting L-OHP-induced PSN using a genome-wide association study (GWAS) approach. PATIENTS AND METHODS: A large prospective GWAS including 1379 patients with stage II/III colon cancer who received L-OHP-based adjuvant chemotherapy (mFOLFOX6/CAPOX) under the phase II (JOIN/JFMC41) or the phase III (ACHIVE/JFMC47) trial. Firstly, GWAS comparison of worst grade PSN (grade 0/1 versus 2/3) was carried out. Next, to minimize the impact of ambiguity in PSN grading, extreme PSN phenotypes were selected and analyzed by GWAS. SNPs that could predict time to recovery from PSN were also evaluated. In addition, SNPs associated with L-OHP-induced allergic reactions (AR) and time to disease recurrence were explored. RESULTS: No SNPs exceeded the genome-wide significance (P < 5.0 × 10-8) in either GWAS comparison of worst grade PSN, extreme PSN phenotypes, or time to recovery from PSN. An association study focusing on AR or time to disease recurrence also failed to reveal any significant SNPs. CONCLUSION: Our results highlight the challenges of utilizing SNPs for predicting susceptibility to L-OHP-induced PSN in daily clinical practice.


Assuntos
Neoplasias do Colo , Estudo de Associação Genômica Ampla , Protocolos de Quimioterapia Combinada Antineoplásica , Quimioterapia Adjuvante , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila/uso terapêutico , Humanos , Recidiva Local de Neoplasia , Oxaliplatina/efeitos adversos , Estudos Prospectivos
16.
Carcinogenesis ; 42(11): 1380-1389, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34447990

RESUMO

XPC deficiency is associated with mitochondrial dysfunction, increased mitochondrial H2O2 production and sensitivity to the Complex III inhibitor antimycin A (AA), through a yet unclear mechanism. We found an imbalanced expression of several proteins that participate in important mitochondrial function and increased expression and phosphorylation of the tumor suppressor p53 in Xeroderma pigmentosum complementation group C (XP-C) (XPC-null) cells compared with an isogenic line corrected in locus with wild-type XPC (XPC-wt). Interestingly, inhibition of p53 nuclear import reversed the overexpression of mitochondrial proteins, whereas AA treatment increased p53 expression more strongly in the XP-C cells. However, inhibition of p53 substantially increased XP-C cellular sensitivity to AA treatment, suggesting that p53 is a critical factor mediating the cellular response to mitochondrial stress. On the other hand, treatment with the antioxidant N-acetylcysteine increased glutathione concentration and decreased basal H2O2 production, p53 levels and sensitivity to AA treatment in the XPC-null back to the levels found in XPC-wt cells. Thus, the results suggest a critical role for mitochondrially generated H2O2 in the regulation of p53 expression, which in turn modulates XP-C sensitivity to agents that cause mitochondrial stress.


Assuntos
Proteínas de Ligação a DNA/genética , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Transformada , Humanos
18.
Infect Prev Pract ; 3(2): 100128, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34368745

RESUMO

From 2015 until 2020, Brucella melitensis was isolated four times in our microbiology laboratory. All patients had travelled in endemic-areas. Immediately after the first occurrence, all laboratory staff were risk-stratified and preventive and protective measures were applied according to CDC guidelines. Nineteen workers were exposed and needed chemoprophylaxis and follow-up. At each subsequent occurrence, risk analysis was performed, and additional measures were implemented accordingly, leading to a progressive reduction of exposed staff members to none the fourth time. We describe here the additional measures that permitted this important exposure reduction.

19.
Phys Rev Lett ; 126(24): 241101, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213922

RESUMO

The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV/n to 2.0 TeV/n allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV/n to 2 TeV/n our present data are compatible with a single power law with spectral index -2.60±0.03.

20.
RSC Adv ; 11(23): 14063-14070, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423950

RESUMO

Pt is an excellent and widely used hydrogen evolution reaction (HER) catalyst. However, it is a rare and expensive metal, and alternative catalysts are being sought to facilitate the hydrogen economy. As tungsten carbide (WC) has a Pt-like occupied density of states, it is expected to exhibit catalytic activity. However, unlike Pt, excellent catalytic activity has not yet been observed for mono WC. One of the intrinsic differences between WC and Pt is in their magnetic properties; WC is non-magnetic, whereas Pt exhibits high magnetic susceptibility. In this study, the WC lattice was doped with ferromagnetic Co nanocrystals to introduce an ordered-spin atomic configuration. The catalytic activity of the Co-doped WC was ∼30% higher than that of Pt nanoparticles for the HER during the hydrolysis of ammonia borane (NH3BH3), which is currently attracting attention as a hydrogen fuel source. Measurements of the magnetisation, enthalpy of adsorption, and activation energy indicated that the synergistic effect of the WC matrix promoting hydrolytic cleavage of NH3BH3 and the ferromagnetic Co crystals interacting with the nucleus spin of the protons was responsible for the enhanced catalytic activity. This study presents a new catalyst design strategy based on the concept of an internal magnetic field. The WC-Co material presented here is expected to have a wide range of applications as an HER catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...